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The principle of maximum flow rate (PMR) proposed by Abramovich [i, 2] is now widely 
used to calculate the main flow parameters in swirl sprayers. Here we show that the basic 
flow parameters in a swirl sprayer of a special type (a sprayer w~th a Borda mouthpiece) 
can be calculated exactly by means of conservation laws within the framework o F the model 
of an ideal incompressible fluid. Comparison of the exact results with the results obtained 
on the basis of the PMR shows that they differ substantially. 

Figure i shows a sketch of the swirl sprayer and the pattern of flow within it. Fluid 
flowing through the sprayer is directed to the swirl chamber along cylindrical~tangential 
channels of the radius r 0. The axes of these channels are displaced relative ~o the sprayer 
axis, which coincides with the zaxis of the cylindrical coordinate system. The channel 
axes are displaced by the amount R 0 and are located in a plane perpendicular t@ the z axis. 
The fluid acquires an axial angularmomentum, and intensive rotation begins toloccur. A 
hollowvortex is formed on the sprayer axis. The vortex has the radius R I on ~he rear wall 
of the swirl chamber and the radius R 2 on the straight section of the nozzle W~ere the flow 
is equalized (the axial velocity component is independent of z). The pressure!~p at the boun- 
dary of the cavity takes a constant value which can be assumed to be equal to zero. At the 
outlet of the nozzle (mouthpiece) of radius;R, the liquid is dispersed and for~s a spray 
with the angle ~. In reality, a film of ~i~uid is,broken ~p into dr.ops, with s size of 
the dropsdepending to a significant extemt on the thickness of the liquid layer 6 on the 
straight section of the nozzle. The valut pf 6 is determined by the nozzle fullness factor 
~ = R(I " i~-~), ~ = i - (R2/R) 2 

The main parameters of the flow in t~e swirl sprayer (the most important characteristics 
of the sprayer from the viewpoint of its ~ractical use) are as follows: the ~low rate for 
the specified pressure gradient at the in~et and outlet, defined by the discharge coefficient 
~; the no{zle fullness factor r the spra~angle a. 

In the swirl sprayers in actual use, the flow and the above-mentioned quantities depen d 
to a ~cons{derab!e extent on the viscosity ~f the liqui~ (the possibility of t~e ,onset of 
turbulence must also be taken into account). 

NeVertheless, it is of definite interest to study flow in swirl sprayers w~thin the 
framework~of the theory of an ideal incompressible fluid. Such an approach p~ovides a basis 
for under~tanding the most characteristic features of the phenomenon in quest~. It makes 
it possible to find the main flow parameters in a first approxi~tion and is ~viously a 
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necessary step toward the development of reliable engineering methods of designing actual 
swirl sprayers. Comparison of the results of the theory and experiment without considera- 
tion of viscosity and turbulence may have some usefulness for several existing sprayers and 
some designs of special sprayers (which have yet to be built). 

Within the framework of the model of an ideal incompressible fluid, steady-state axi- 
symmetric flow with swirling (as we can consider the flow in a swirl sprayer to be, in a 
first approximation) is described by the following equation for the stream function written 
in a cylindrical coordinate system using standard notation [3]: 

o%p + o~r t o~ ~ d,7 r ,~r 
Oz -'g" Or 2 r 0 r = r" d'-r -- ~2 d r  ( i )  

where  H(~) and r ( ~ )  a r e  a r b i t r a r y  f u n c t i o n s  o f  ? ;  H(~) i s  t h e  r i g h t  s i d e  o f  t h e  B e r n o u l l i  
i n t e g r a l ,  i t  b e i n g  t h e  c o n s e q u e n c e  o f  t h e  e n e r g y  c o n s e r v a t i o n  law- 

t ~ v~) P -2(v~+v~+ + --6_ = ~r (~p); ( 2 )  

F(~) is the circulation about a fluid contour in the form of a circle having its center on 
the z axis and located in a plane perpendicular to this axis. Thus, 

v ,  = r@) /2~r .  ( 3 )  

It is evident that Eq. (3) expresses the law of conservation of angular momentum. To 
determine the function ~(r, z) from Eq. (i), it is necessary to specify the form of the func- 
tions H(~) and F(~). This can be done by assuming that they are known at the inlet. It 
is also necessary to assign the corresponding boundary conditions: the condition of im- 
permeability on the solid walls; constancy of pressure[ the kinematic condition on the free 
surface of the vortex. 

However, it is known that stagnant regions with closed streamlines and reverse flows 
may develop in the flow b~ing examined, and assigning H(~)a~d F(~) in these cases requires 
special investigation an~ the use of additional hypotheses. If such hypotheses have been 
worked out and H(~) and F(~) have been assigned in these regions, then additional hypotheses 
of the PMR type are not needed to determine the flow. Due:to the nonlinearity of Eq. (i), 
the problem may also npt have a unique solution under these conditions. In this case, solu- 
tions to be compared with experimental results are selected'on the basis of additional an- 
alysis (study of stability, changing of flow regimes, analysis of the problem with initial 
conditions, etc.). 

However, except for certain very simple cases, such an approach to studying a specific 
problem is very complicated and, in the case of flow in a swirl sprayer, is not used. In- 
stead, the flow parameters in swirl sprayers are commonly calculated by an approach based 
(within the framework of the ideal incompressible fluid model) on the use of conservation 
laws and the PMR (or other similar principles). 

The theory in [i, 2] (Taylor [4] and many other investigators later arrived at similar 
conclusions) is based on the following premises. The quantities H(~) and F(~) are indepen- 
dent of ~ and are constant: 

H ( ~ )  = po/p,  F(r = F (4 )  

[P0 is the pressure:(total head) at the inlet of the sprayer]. As is readily apparent, these 
propositions correspond to the presumption of potential flow. 

It follows from this that the axial component of velocity v z in the nozzle on the sec- 
tion where the flow is equalized is independent of r, i,e., is constant over the cross sec- 
tion of the flow $2. ~ Let v z = w in this section. Then we find from the mass conservation 
law that 

With allowance for the law of conservation of angular momentum (3), the law of energy 
conservation or the equivalent Bernoulli integral (2) gives the following for the free sur- 
face in the same section: 

w2 F2 Po 
2 +8n2/~ ~ -- 0 " (6) 
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The design of the swirl sprayer leads to the following relationship between F, Q, and R: 

F = 2AQ/R, (7) 

where the dimensionless quantity A (the flow swirl parameter)is the main geometric char- 
acteristic of a swirl sprayer and is determined by the sprayer's geometric parameters [i]: 
A = RoR/(nr0 2) (n is the number of inlet channels). 

Taking (I) and (2) into account, we use (5) and (6) to obtain: 

Q = ~ R ~  1 / ~ .  ( s )  

~V'~ ~-~ (9) 

(~ is the discharge coefficient). 

It is evident from this that use of the three conservation laws (mass, energy, and angu- 
lar momentum) does not allow us to find the main parameters of the flow. The quantity ~ re- 
mains unknown. Use of the law of conservation of momentum for the sprayer sketched in Fig. 
1 does not ensure closure, since the pressure distribution on the walls of the sprayer is 
unknown. 

The PMR hypothesis consists of the fact that the hollow vortex formed in the nozzle 
of a swirl sprayer has a radius such that ~ takes the maximum value for the given head P0- 
These vortex dimensions correspond to a stable flow regime. 

The hypothesis leads to relations which make it possible to find ~ and ~ as a function 
of the Swirl parameter A: 

~3/2 I /2 (~ - ~) ( I 0 )  

The spray angle ~ was determined in [i] as the mean value of the ratio of the azimuthal and 
axial velocity components across the nozzle 

t g - ~  = <%>, r 2R ( l l )  

from which 

a 2AT ~ 
tg-2- : i + V ~ - ~ "  (12 )  

Figure 2 (dashed lines) shows the dependences of ~, ~ ,~ and ~ on A constructed by means of 
Eqs. (I0) and (12). 

Using the analogy of the flow of a heavy liquid through a spillway, the author of [5] 
ii~nterpxeted the PMR as the condition of equality of the velocity in the nozzle of a swirl 
sprayer to the maximum velocity of the centrifugal waves (long low-amplitude waves propagat- 
ing over the surface of the hollow potential vortex in the cylindrical channel). The velo- 
city of the centrifugal waves on the free surface of the hollow vortex in the nozzle is found 
from the formula 

w, = 2 ~  " (13) 

T a k i n g  (7 )  i n t o  a c c o u n t ,  we f i n d  f rom (5 )  and  (13 )  t h a t  

= V 2 i  --~ (14) 

Thus,  i t  f o l l o w s  f rom t h e  PMR t h a t  s = 1. The e q u i v a l e n c e  o f  t h e  PMR and t h e  r e q u i r e -  
ment  t h a t  t h e  c o n d i t i o n  s = 1 be s a t i s f i e d  i s  r e g a r d e d  as  v a l i d a t i o n  o f  t h e  PMR. 

The  a r g u m e n t s  made i n  s u p p o r t  o f  t h e  PMR a r e  u n c o n v i n c i n g .  They have  been  t h e  s u b j e c t  
o f  r e p e a t e d  c r i t i c i s m  [6 ,  7 ] ,  b u t  t h e  c r i t i c i s m s  t h e m s e l v e s  a r e  somewhat q u e s t i o n a b l e .  

It would be useful and instructive to look at an example (albeit one that is to some 
extent artificial) of flow in which the main parameters are determined exactly. We then com- 
pare these results with the solution based on the PMR. Such an example is presented below. 
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We take a swirl sprayer with a Borda mouthpieze (nozzle) (Fig. 3). As is known, the 
specific form of a Borda mouthpiece in the case of the discharge of a jet without swirling 
allows effective use of the law of momentum conservation and makes it possible to determine 
the cross-sectional area of the outgoing jet. 

It is not hard to see that for swirled flow in a swirl sprayer with a Borda mouthpiece, 
the momentum conservation law makes it possible to obtain a closed system of equations to 
determine the main parameters of the flow without the use of additional hypotheses. 

In the limiting case, when the end walls are moved away and the radius of the chamber 
is increased to infinity, the results obtained are exact. 

It is assumed that the flow is a potential flow except for the region with closed stream- 
lines which forms on the interior of the nozzle edge, where the flow structure does not af- 
fect the subsequent discussion. 

We apply the momentum conservation law to fluid bounded by the free surface of a hollow 
vortex, the walls of the nozzle, and the walls of the swirl chamber. The vortex has the 
area S 2 and is normal to the flow axis. It is located in the section where the flow is equal- 
ized (at infinity). For the z component of the momentum flux we obtain 

R R 

2n j" P l  (r) rdr - -  2~ ~ P.z (r) rdr - -  9~R~cpw 2 = O. 
R i R 2 

(15) 

The remaining sections of the surface of integration do not contribute to this component 
or are self-balancing. In the limit, we have 

px(r) = Po - -  9r2/On2r2); ( 1 6 )  

P2~) = Po - -  PF2I(8R~) - -  (l/2)pm% ( 1 7 )  

Here, pa(r) is the pressure on the front and rear walls of the swirl chamber; pc(r) is the 
pressure in the section S 2. The value of R I is determined from the condition whereby p1(R1) 
vanishes due to the triviality of pressure on the free surface. This gives 

B x = r 1 2 n  ] / ' 2 p o / 9  . ( 1 8  ) 

Integrating in (15) with allowance for (16) and (17), we find 

~ -  + A 2 In (1 - -  ~I) = -~- + -~- A2 + in (t  - -  ~) , 

whe re  T1 = 1 - ( R I / R )  2, w h i l e  f r o m  ( 1 8 )  we h a v e  

1 - - ~ 1  = A2~L 

Thus, using the laws of conservation of mass, momentum, 
boundary condition (18), we obtained closed system (9), 

(19) 

( 2 0 )  

a n g u Z a r  momentum, a nd  e n e r g y  and  
(19),  (20) to  d e t e r m i n e  ~,  ~, and  ~I- 
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The solution of this system is conveniently represented in the form 

.42= i q(2nu;~) ~, q ln q 1.-}-, ~ ]/~-"~'--q, 
( i - q ) ( l + z )  2': =7 - -q '  1 ~ = 2 ~  

i+X q 
(P ---- 2--~' q~l=-I 2 q-- ;~" (21) 

Here, q changes within the range 0 < q < i. The relations B(A) and ~0(A) calculated from 
these formulas are shown in Fig. 2 (solid curves). With a change in A from A = 0 to A + ~, 

and ~ decrease monotonically from 1/2 to 0. The spray angle ~ can also be found by means 
of the momentum conservation law. We find that v~+ 0 in the spray at large distances from 
the edge of the nozzle, i.e., at large values of r. Thus, the axial component of the momen- 
tum flux I in the jet is given by the equality 

I = pQ cos -~. (22) 

On the other hand, the same component of flux over the surface S z in the nozzle is 

I = p n R 2 ~ w ~ + . g ~  q- l n ( l - -  ~) . (23) 

Equating (22) and (23),  we f ind  

a ] / i - - ~  { t +  ' A'[t~_-~2 +%oln(t--~)]}. 

The relation ~(A) is shown in Fig. 2 (solid curve). 

Thus, for a swirl sprayer with a Borda mouthpiece, the conservation laws can be used 
to determine the basic flow parameters unambiguously. Meanwhile, for an ideal fluid in the 
limiting case, these results are exact and differ significantly from the results obtained 
on the basis of the PMR. It can be seen from Fig. 2 that the results for ~ coincide at large 
A. With large degrees of swirling (large A), the pressure distribution on the walls of the 
swirl chambers in swirl sprayers with conventional nozzles will approach distribution (16). 
This makes it possible to use the momentum conservation law in this case (with an accuracy 
which increases as A increases) and to expect that the main flow parameters will be close 
to the values calculated for a sprayer with a Borda mouthpiece. Of course, evaluation of 
the accuracy of the approximation obtained by such an approach will require a special in- 
vestigation, but a comparison with experimental results is of some use, particularly for 
large A. 

Figure 2 shows experimental data [7] for a sprayer with R = 0.35 cm, a nozzle length 
of 0.5 cm, and P0 = 3"106 Pa (the light circles correspond to ~, while the dark circles cor- 
respond to ~). It is evident that the experimental points for a sprayer with such parameters 
agree with the results calculated in the present study. However, there is a considerable 
difference for sprayers with smaller R at lower values of P0- This difference can evidently 
be attributed to the effect of viscosity. 

The value of s determined from Eq. (14), equal to unity by the PMR, changes from s + 
to s = 2 with a change in A from A = 0 to A + ~, i.e., the flow is supercritical. This pro- 
duces the above-noted difference for ~0, despite the closeness of the discharge coefficients 
at large A. 

Thus, the principal premise of the PMII (that the flow in the nozzle must be exactly 
critical) is not consistent with the exact solution. This casts a doubt on the reliability 
of the results obtained using the PMR. 
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DYNAMICS OF A UNIFORM TURBULENT LAYER IN A STRATIFIED FLUID 

V. Yu. Lyapidevskii UDC 532.526;51.465 

At large Reynolds numbers, a flow of an incompressible density-stratified fluid sepa- 
rates into alternating layers of turbulent and laminar flow [I]. Turbulent flow develops 
under the influence of shear instability or as a result of boundary conditions. One problem 
encountered in the description of such flows is representing the process of entrainment of 
surrounding fluid into a turbulent layer in parametric form [2, 3]. The most important fac- 
tor here is the effect of stratification on the rate of entrainment. Various mechanisms 
of instability development, leading to mixing [2], become predominant. The specific mecha- 
nism that prevails depends on the relation between buoyancy and inertia. When mixing occurs, 
the rate of entrainment may change by several orders of magnitude. Since the flow region 
in which a given type of instability will develop is unknown beforehand, it is interesting 
to attempt to construct a model of stratified flow that will uniquely describe the entrain- 
ment process. 

One possible approach to the solution of this problem is demonstrated below by using 
the example of the evolution of a turbulent layer in a quiescent fluid of another density. 
This class of flows includes submerged jets, gravitational flows, and the movement of the 
uniform upper layer of an ocean to a lower depth by wind [I]. The model that is constructed should 
reflect such experimentally observed flow properties as the potential for controlling the 
entrainment process by altering the conditions downflow, the sharp reduction in entrainment 
velocity with the transition from supercritical to subcritical flow, and the phenomenon of 
the excitation of short internal waves at the boundary of the turbulent layer in flows with 
a velocity shift [2]. 

Here we examine these phenomena on the basis of equations of motion of the layer which 
constitute a variant of the equations of "shallow water." Allowance is made for mixing. 
The equatiQns of motion were derived from conservation laws in a manner similar to [4]. The 
rate of entrainment of fluid into the turbulent layer is assumed to be proportional to the 
velocity of "large eddies" that are commensurate with the thickness of the layer [2, 5]. 
Analysis of traveling waves in the system in question shows that solutions of the solitary- 
wave or jump-wave types describe the naturally-observed generation of short-period internal 
waves at the crests of longer (tidal) waves [6, 7]. 

Equations of "Shallow Water." In the Boussinesq approximation, the equations of a thin 
horizontal layer of fluid of thickness h and density p moving at velocity u in a quiescent 
fluid of density Pr have the form 

h t +  (hu)~ = ~q, (bh)~ + (bhu)~ = O, 

(hu)t-+- (hu ~ + 0.Sbh2)x = O, (1) 
(h(u ~ + e + bh)) t + (hu(u 2 + e + 2bh)) x = O. 

Here, t is time; x, horizontal coordinate; b = (p - pr)g/pr, buoyancy; g, the vertical compo- 
nent of acceleration due to gravity; e is the energy associated with pulsative motion. The 
rate of entrainment of the quiescent fluid into the uniform layer is assumed to be propor- 
tional to the velocity of "large eddies" q characterizing pulsative motions in the layer. 
The eddies are comparable in size to the main flow [5]. System (I) will be closed if we put 

e = qt (2) 

The constant o determines the ratio of the scales of fluctuational and average motions in 
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